
Technology and Design Tools for Multicore

Embedded Systems Software Development

Yuriy Sheynin, Alexey Syschikov, Boris Sedov

Saint Petersburg State University of Aerospace Instrumentation

Why do we need such technology?

© 2006 OMS & MCIT GUAP

2/49

1. “Two-in-one” developer is required:

skilled domain experts + skilled programmer

2. Contradictive requirements to hardware platforms

3. Development of an algorithm and program should be started before
the selection of a specific platform

4. Hardware platforms become more and more complex, includes many
cores, are heterogeneous in all aspects
(cores, memory, interconnect)

5. In order to achieve the necessary requirements an adaptation of
algorithms for the platform and the platform for algorithms is needed

The life cycle of the program in the technology

3/49

Performance

evaluation

Algorithms

design and

programming

Deployment to

target platforms

Frontend Middlend Backend

Performance

evaluation

Algorithms

design and

programming

Deployment to

target platforms

4/49

The life cycle of the program in the technology

5/49
Platform 1

Performance

evaluation

Algorithms

design and

programming

Deployment to

target platforms

The life cycle of the program in the technology

6/49

Performance

evaluation

Algorithms

design and

programming

Deployment to

target platforms

Platform 1Platform N Platform 2

The life cycle of the program in the technology

7/49

The high-level technology structure

VIPE

8/49

1

Симуляция и ранняя оценкаРазмещение на целевой платформеAlgorithms design and programming

The high-level technology structure

VIPE

1

9/49

2

The high-level technology structure

Simulation and early estimation

VIPE

1

10/49

2

3

The high-level technology structure

Симуляция и ранняя оценкаDeployment to target platforms

VIPE

The Visual Programming Language (VPL)

• Separation of design
and programming
(coding)

11/49

The Visual Programming Language (VPL)

• Separation of design
and programming
(coding)

Expert

Programmer

12/49

C/C++

OpenCL

Asm

…

The Visual Programming Language (VPL)

• Separation of design
and programming
(coding)

Expert

Programmer

13/49

• Flexibility and ease-of-change at any design stage

• Explicit parallel program scheme control and management

• No direct coder influence on a parallel program scheme

• Decreasing errors possibility without sacrificing parallel program visibility

• Efficient program maintenance during the whole lifecycle

• Cognitive advantages:

• clear view of the
development process

• traceability of the
dependency graph

• calculations control
structures

• shared data

• natural parallelism

• potential pipelining
Program on VPL – scheme that consist

from calculation operator, control
operators and share data

14/49

The Visual Programming Language (VPL)

VPL and Domain Specific Programming

15/49

• DSL libraries provide convenience of design within an

application domain

• Easy re-use of development results

• Easy to involve domain experts in embedded software

development

• Simplicity of language and libraries extensions by users

• CImg

• OpenCV

• OpenVX

• Lowlevel math

• Arduino

• …

16/49

1. Analysis of the domain area

2. Creation of the

functional elements (FE)

library

3. Development of FE functionality on

C++ & OpenCV

An example: DSL creation for image processing (OpenCV)

17/49

4. The scheme is designed of

DSL and basic VPL language

elements

An example: DSL usage for image processing
Image recognition

18/49

4. The scheme is designed

of DSL and basic language

elements

An example: DSL usage for image processing
Face/eyes recognition

19/49

About OpenVX
OpenVX

• C-based programming approach with mixed C/non-C computing model

• Includes functions and data types of video processing domain area

• Functions library can be expanded, but it is inconvenient (non-portable)

OpenVX support in VIPE

• Full implementation for spec. v.1.0.1 (working on v.1.1)

• VPL:

• DSL for OpenVX functions

• OpenVX-specific data objects

• Code generation:

• Plain C mode with OpenVX functions (vxu)

• OpenVX graph mode

• Mixed mode with OpenVX graphs and other DSLs

An OpenVX graph – a limited subset of VPL program schemes.

VPL scheme + OpenVX functions combines all benefits

© 2006 OMS & MCIT GUAP

AGP defines:

• VPL language syntax

• semantics of VPL language
objects

• control units

AGP provides:

• formal verification

• identical results in different
run-time environments

• dynamics of parallel
computations

• combination of working in shared
and distributed memory models

Asynchronous Growing Processes (AGP) formal computational model

20/49

Program scheme —

oriented graph

Vp – operator vertex,

Vd – data-object vertex,

W/R/RE – arcs (links) marking

Vd1

Vd3

Vd2

W

R

W

R
E

W

Vp1

Vp2 Vp3
W

W

Vp4

RE

AGP – the single model for all types of parallel
computations and kernel - data interaction

(shared memory / message passing)

Domain

Visual programming environment: VIPE

21/49

Development process support tools:

• parallel program scheme validation

• syntax checking

• types checking

• links correctness

• scheme completeness

• etc.

22/49

Interactive tools

Development process support tools:

• parallel program scheme validation

• verification (in progress) • unambiguity

• deadlocks

• livelocks

• finitness

• etc.

23/49

Interactive tools

Interactive tools

Development process support tools:

• parallel program scheme validation

• verification (in progress)

• interactive debugging, etc.

• step-by-step debug

• breakpoints

• watches

• data transfers

• computation traces

• operators executions

• functional debugging

by serial execution

• etc. 24/49

25/49

Early program estimation and evaluation

e
x
p
e
rt

Performance evaluation. Visual Profiler
Hot-spots detection

Modes :

• Absolute execution time of each node

• Relative execution time of each node

• Hot-spots 26/49

Performance evaluation. Static Analysis

Time reduce
Speedup

Efficiency

𝐸 =
𝑇1

𝑁 ∗ 𝑇𝑛
𝑆 =

𝑇1
𝑇𝑛

𝑅 =
𝑇𝑛
𝑇1
∗ 100%

𝑁 – number of processors
𝑇1 – program execution time on the1 processor

𝑇𝑛 – program execution time on N processors

Fast, early estimation of the program performance on the many core platform

27/49

Allows estimating :

1. Performance requirements for cores of

the embedded system

2. Memory requirements

3. Load balance of various allocations

4. Volume and intensity of data exchange

5. Efficiency of hardware occupation

6. Bottlenecks of hardware platform,

program and task distribution

Performance evaluation. VPL Simulator

28/49

• Mapping operators to one or several core types

(CPU, GPU, DSP, DMA)

• Operators on various core types

• Data on various data types

• Data exchanges on various connection types

• Selecting the implementation for data processing

operators

• Preparation of initial data and the results of

operator of the program, taking into account the

specifics of the different communication

mechanisms
29/49

Support of heterogeneous platforms programming

Heterogeneous allocation
Main memory Local memory

CPU

CPU

DSP (parallel flows) Local memory

DSP (dynamic parallel flows)

DSP (host)

DSP (host)

CPU

• Memory pre-allocation
• Start of computations

CPU

• Dynamic unrolling on CPU
• Offload the parallel loop to DSP cluster
• Dynamic unrolling on DSP (another loop)
• Results back to CPU, end of computation 30/49

© 2006 OMS & MCIT GUAP

31/49

Deployment to target platforms

Working prototypes

• ANSI C

• C++

• RT-run-time on a multicore

platform (in progress)

• Parallel OpenMP

Proof of concept

• Parallel threads

• MPI

• Assembler MIPS, DSP

Use cases and demonstrators

Use case: face identification
Task description

© 2006 OMS & MCIT GUAP

Training of

neural network

Algorithm of face

identification
Face database

Camera

Identification and

tracking

(camera rotation)

Camera

• Program is developed with VIPE

33/49

• Software part: low quality of face recognition

• Hardware part: Ci20 (perspective – ELISE by ELVEES)

• Computations only on the CPU

• Works slowly

Use case: face identification

© 2006 OMS & MCIT GUAP

34/49

Terminator Vision System. Student project

Autonomous Cyber-Physical System combining multicore computations,

control and mechanical parts. The Vision System identifies people from the

database and tracks them with rotating camera.

Project presented on hackster.io + Imagination challenge:

https://www.hackster.io/contests/CI20

• Project is developed with VIPE

• Face recognition is performed

by using training neural network

• Database of faces was created

for face classification

• Tracking is performed by using

servo, which is controlled by

Arduino that receives commands

from the Ci-20 board
35/49

https://www.hackster.io/contests/CI20

• Program developed with VIPE

• 2 threads are used

• OpenGL

Use case: number plate recognition

© 2006 OMS & MCIT GUAP

36/49

• Software part: low quality of number plate recognition

• Hardware part: Ci20 (perspective – ELISE by ELVEES)

• Computations only on the CPU

• Works slowly

AFE
802.11
ac 2x2

RPU
(VOLT)
ao 2x2

ISP
(Felix)

2
pipes

GPU
(Ctyde)

2
clusters

M6160
Virtuoso
L1 = 18K

InterAptiv
Single
Core

L1 = 32 K
L2 = 268K

VPU
Decode
(Coral)

VPU
Enoode
(ONYX)

Р6802
(Apache)
2 cores

L1 = 64K
L2 cache =

1MB

PLL

POR

Velcore

Navicore

Peripherals
DMA

Engine
Crypto
Engine

PDF
DDR

Controller

USB USB MIPI MIPI HDMI HDMI DDR

Bus fabric Security / NOC / Arbitration
System RAM / ROM / DMA

ELISE

Use case: number plate recognition

© 2006 OMS & MCIT GUAP

GPU

PC

CPU

Ci20

37/49

Use case: number plate recognition

© 2006 OMS & MCIT GUAP

Symbol detection of

each number plate

Result

output

Regions

Of

Interests

Camera

38/49

Ci20

C code

Compile Run
© 2006 OMS & MCIT GUAP

Result

Wi-Fi

Use case: number plate recognition
Scheme of working with Imagination Creator Ci20 board

PC with VIPE

Webcam

39/49

VIPE one button deployment

40/49

Feature tracking (OpenVX)

DSL, based on OpenVX

Feature tracking program in VIPE 41/49

DSL and design

Feature tracking (OpenVX)

Feature tracking program run on the

x86 platform with using the sample

implementation by Khronos

42/49

Results

Feature tracking

Performance estimation of the feature

tracking program with sequential frame

processing

Performance estimation of the feature

tracking program with parallel frame

processing
43/49

Static analysis

Feature tracking

Profiling of the feature tracking program

Large amount of time is taken by

image format conversion function

(from OpenVX format and back)

44/49

Visual Profiler

Traffic radar object detection

Traffic radar object detection is developed in the PaPP

project, part of the European technical platform

ARTEMIS/ECSEL.
45/49

Development

However, the results were worse than

expected. Static analysis of subprogram

"Data processing units" shows close to a linear

reduction of time for 8 cores

Static analysis shows acceptable reduction

of time on 2-3 cores

46/49

Traffic radar object detection

Static analysis

Visual Profiler shows, that a large amount of

time is taken by function for reading the input

file (prototype uses data from the input file).

File reading function is in sequential part,

hence the parallelism is limited by Amdahl's law.

Actual process of getting the input data should be optimized

to take less time. Evaluation of program with reduced

operating time of reading function shows satisfactory results.
47/49

Traffic radar object detection

Visual Profiler

Cores (simulator)
or

threads(OpenMP)

Static analysis
sec. / %

Modeling

VPL
sec. / %

Execution

sec. / %

Without OpenMP 1.60

1 1.26 / 100 1.29 / 100 1.65 / 100

2 0.64 / 50.8 0.88 / 68.2 1.00 / 60.6

3 0.60 / 47.6 0.72 / 55.8 0.81 / 49.1

4 0.34 / 30.0 0.55 / 42.6 1.25 / 76.7

Hardware platform

• Core i7 8 cores-> VirtualBox VM 4 cores

• Ubuntu 14.04, GCC 4.9.2.

Input data

• 12 MB signal samples 48/49

Traffic radar object detection

Comparison of the results of analysis, simulation and execution

Summary

• Technology covers various requirements of embedded SW development

• Design, programming, evaluation, porting etc.

• DSLs for involving domain specialists into development process

• Rapid SW prototyping for early customer presentations

• Formal model basis for proofed and predictable results, including debugging

• Fast tools adaptation for new cores and platforms

• Supporting development tool for heterogeneous cores,

platforms, system software infrastructure

49/49

